Incorporating Diversity and Density in Active Learning for Relevance Feedback

نویسندگان

  • Zuobing Xu
  • Ram Akella
  • Yi Zhang
چکیده

Relevance feedback, which uses the terms in relevant documents to enrich the user’s initial query, is an effective method for improving retrieval performance. An associated key research problem is the following: Which documents to present to the user so that the user’s feedback on the documents can significantly impact relevance feedback performance. This paper views this as an active learning problem and proposes a new algorithm which can efficiently maximize the learning benefits of relevance feedback. This algorithm chooses a set of feedback documents based on relevancy, document diversity and document density. Experimental results show a statistically significant and appreciable improvement in the performance of our new approach over the existing active feedback methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Relevance Feedback in Image Retrieval by Incorporating Unlabelled Images

In content-base image retrieval, relevance feedback (RF) schemes based on support vector machine (SVM) have been widely used to narrow the semantic gap between low-level visual features and high-level human perception. However, the performance of image retrieval with SVM active learning is known to be poor when the training data is insufficient. In this paper, the problem is solved by incorpora...

متن کامل

Asymmetric propagation based batch mode active learning for image retrieval

Relevance feedback is an effective approach to improve the performance of image retrieval by leveraging the labeling of human. In order to alleviate the burden of labeling, active learning method has been introduced to select the most informative samples for labeling. In this paper, we present a novel batch mode active learning scheme for informative sample selection. Inspired by the method of ...

متن کامل

Leveraging Active Learning for Relevance Feedback Using an Information Theoretic Diversity Measure

Interactively learning from a small sample of unlabeled examples is an enormously challenging task. Relevance feedback and more recently active learning are two standard techniques that have received much attention towards solving this interactive learning problem. How to best utilize the user’s effort for labeling, however, remains unanswered. It has been shown in the past that labeling a dive...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007